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Abstract
Lloyd’s formula is an elegant tool in multiple-scattering theory. It implicitly
provides an analytical integration over energy and over all space and directly
gives the number of states as a function of energy. The usual derivations of
Lloyd’s formula are involved and the range of their applicability is not obvious.
It is the purpose of this paper to give a derivation which requires only elementary
mathematical manipulations. The result is valid for potentials of general shape
and for arbitrary complex energies.

1. Introduction

Lloyd’s formula [1, 2] is an important concept in the Korringa–Kohn–Rostoker (KKR)
multiple-scattering theory [2–4], since it provides an analytical integration over energy and
over all space, and directly gives the number of electronic states as a function of energy. Its
mathematical derivation is involved and has been the subject of many investigations [1, 2, 5–23].
Unfortunately, because of mathematical difficulty some of the derivations are incorrect or of
limited applicability. Kaprzyk and Bansil [19] argue that Lloyd’s formula in the previous
literature contains spurious singularities, which must be subtracted in an ad hoc manner.
Lehmann [10] points out a mistake made by Lloyd [1] and John and Ziesche [5]. Terakura refers
to a shortcoming in the formulation of Lasseter and Soven [7]. Lodder and van Dijkum [15]
and Faulkner and Stocks [16] criticize Jacobs and Zaman [13] because they left out certain
critical terms. Furthermore, most of the existing derivations are restricted to real energies and
to potentials of muffin-tin type. This is a serious limitation in view of the recent developments
of the KKR Green-function method [24], which now routinely uses the general shape of the
potential and complex energies contours with finite temperatures [25] for energy integrations
necessary to obtain charge densities and total energies.

The extension of Lloyd’s formula to complex energies has been treated by Drittler et al
[18], Kaprzyk and Bansil [19], and Akai and Dederichs [26]. The situation in the literature with
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respect to the muffin-tin approximation can be characterized by a statement given by Zhang and
Butler [21], who state that they believe that their result is valid for full-cell potentials, although
they had to use some steps in their derivation which are not valid for this case. According
to Dederichs [27] a treatment of potentials of general shape requires a careful separation into
single-scattering and multiple-scattering terms. The formal operator expression Tr ln(1−gV ),
where g is the free space Green function and V is the potential, can be written as a sum of
Tr ln(1 − gbτ ) and Tr ln(1 − gsV ), where τ is defined as τ = V (1 − gsV )−1 and gb and
gs are the back-scattering and single-scattering parts of g. The logarithms can be expanded
into infinite series, where each term can be integrated over space. The resulting series can be
summed to obtain matrix logarithms and yields Lloyd’s formula [20, 28] in the form used in
the Jülich full-potential KKR computer programs [24].

Although these formal manipulations lead to the correct result, the range of validity is not
obvious, since the formal series for the multivalued complex logarithms probably diverge for
most potentials. It would be desirable to derive Lloyd’s formula more straightforwardly and
it is the purpose of this paper to give such a derivation, which uses no more mathematics than
the product rule of differentiation, the separation of integrals over all space into integrals over
atomic cells and simple substitutions. No use is made of boundary conditions at infinity, of
Wronskians or of surface integrals over complicated cell boundaries. Real-part contributions
are not neglected and no plausibility arguments are necessary to remove rapidly oscillating
terms. The present derivation differs from most previous ones, which use differential equations
for the multiple-scattering wavefunction, by the use of integral equations for the multiple-
scattering Green function. The advantage of integral equations is that boundary conditions
are built in, whereas these boundary conditions require an explicit treatment in differential
equations.

The outline of the paper is as follows. Section 2 describes the basic theory and gives
Lloyd’s formula in the notation of Drittler et al [18, 28], which is valid for complex energies
and for non-overlapping potentials of arbitrary shape. Section 3 contains the full-potential
multiple-scattering equations, which are necessary for the elementary derivation of Lloyd’s
formula. The derivation in section 4 is based on the integral equation (Dyson equation), which
connects two Green functions for two different potentials. The trace of the difference in the
Green functions is separated into the contributions arising from single-site scattering, back-
scattering and cross terms. These terms are simplified by various substitutions and are shown
to lead to the correct form of Lloyd’s formula. Section 5 contains the conclusions and the
appendices contain necessary details for the derivation in section 4.

2. Basic theory

For a system of non-interacting electrons the electronic density of states can formally be
expressed as

n(E) = − 1

π
Im Tr G(E). (1)

Here the energy E is in general complex and G(E) = (E − H )−1 is the Green-function
operator for the Hamiltonian H of the single-particle Schrödinger equation H = −∇2 + V
(using atomic units h̄2/2m = 1). From (1) the standard result for the density of states at real
energies follows by taking the limit Im E → +0. The difference between the density of states
for two systems characterized by two Green-function operators G(E) and g(E) is given by

�n(E) = − 1

π
Im Tr[G(E) − g(E)]
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= − 1

π
Im Tr[g(E)V G(E)]

= − 1

π
Im Tr

[
g(E)V

1

1 − g(E)V
g(E)

]
(2)

where the second and last line follow from the fundamental operator equation

G(E) = g(E) + g(E)V G(E) = 1

1 − g(E)V
g(E). (3)

Here and below V denotes the difference between the two potentials. Because of

g(E)g(E) = − d

dE
g(E) (4)

the last line of (2) can be expressed as

�n(E) = − 1

π
Im Tr

d

dE
ln(1 − g(E)V ). (5)

The difference between the integrated density of states is thus given by

�N(E) = − 1

π
Im Tr ln(1 − g(E)V ). (6)

The essential achievement of Lloyd’s formula is the fact that by multiple-scattering theory the
formal operator Tr ln(1 − gV ) can be converted into a computationally useful matrix form

�N(E) = 1

π
Im

∑
n

ln det |αn
L L ′(E)| − 1

π
Im ln det

∣∣∣∣δnn′
L L ′ −

∑
L ′

gnn′
L L ′(E)tn′

L ′L(E)

∣∣∣∣ (7)

where the first term represents the single-scattering and the second term the back-scattering
contributions. In (7) the notation of Drittler et al [18, 20] is used, which is valid for complex
energies and non-overlapping potentials of arbitrary shape. The first term contains a sum over
all single-scattering sites and a determinant over the angular-momentum indices. The second
term contains a determinant over the combined angular-momentum and site indices. If the
potentials are such that higher angular momenta can be neglected, then the determinants can be
evaluated from matrices of finite dimensions in the angular-momentum indices and (7) gives
the exact result for the difference of the number of electronic states. It should be noted that
for an infinite number of sites, for instance for an infinite periodic crystal, (7) gives an infinite
result [23]. Then it is useful to define the density of states per unit cell and to exploit the
periodicity by Fourier transformation and Brillouin-zone integration. This treatment is rather
straightforward and will be omitted here.

3. Full-potential multiple-scattering equations

In real space the operator equation (3) is an integral equation of the form

G(x,x′; E) = g(x,x′; E) +
∫

dx′′ g(x,x′′; E)V (x′′)G(x′′,x′; E) (8)

or of the equivalent form

G(x,x′; E) = g(x,x′; E) +
∫

dx′′ G(x,x′′; E)V (x′′)g(x′′,x′; E) (9)

where the integrals are over all space and x and x′ are arbitrary points in space. For free space
with vanishing potential, the Green function is explicitly known as

g(x,x′; E) = −exp(iκ |x − x′|)
4π |x − x′| , κ = √

E (10)
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which obviously satisfies the symmetry g(x,x′; E) = g(x′,x; E). By use of (8) and (9) it
can be shown that the Green function for non-vanishing potentials also satisfies G(x,x′; E) =
G(x′,x; E). This symmetry will be used in the derivation given below.

Multiple-scattering theory provides a decomposition of the Green function into single-
scattering quantities, which depend on the potentials of the single individual atomic cells,
and into energy and site dependent structure constants, which describe the multiple-scattering
properties. In the notation of [24, 29] the Green functions can be written as

G(r + Rn, r′ + Rn′ ; E) = δnn′ Gn
s (r, r′; E) +

∑
L L ′

Rn
L (r; E)Gnn′

L L ′(E)Rn′
L ′(r

′; E) (11)

g(r + Rn, r′ + Rn′ ; E) = δnn′ gn
s (r, r′; E) +

∑
L L ′

J n
L (r; E)gnn′

L L ′(E)J n′
L ′ (r

′; E) (12)

where site-centred coordinates r = x − Rn , r′ = x′ − Rn′
are introduced and Rn and Rn′

denote the scattering sites. The notation in (12) for the Green function g resembles the usual
one for free space, where the single-scattering wavefunctions J n

L are given by products of
spherical Bessel functions jl and spherical harmonics YL and do not depend on n. By using
the explicit superscript n the present derivation is valid for any reference system [23], not just
for the free-space reference system. The first terms on the right-hand sides of (11) and (12)
contain the single-site Green functions, which are connected by the integral equations

Gn
s (r, r′; E) = gn

s (r, r′; E) +
∫

n
dr′′ gn

s (r, r′′; E)V n(r′′)Gn
s (r

′′, r′; E) (13)

Gn
s (r, r′; E) = gn

s (r, r′; E) +
∫

n
dr′′ Gn

s (r, r′′; E)V n(r′′)gn
s (r

′′, r′; E) (14)

where V n(r) is the potential difference restricted to the atomic cell n and where the integrals
over the cell are denoted with explicit subscripts. The second terms on the right-hand sides
of (11) and (12) are the back-scattering contributions. They contain the structure constants
Gnn′

L L ′ and gnn′
L L ′ , and the single-scattering wavefunctions Rn

L and J n
L , which are connected by

the integral equation

Rn
L (r; E) = J n

L (r; E) +
∫

n
dr′ gn

s (r, r′; E)V n(r′)Rn
L (r′; E). (15)

The resolvent kernel for this integral equation is Gn
s (r, r′; E)V n(r′) according to the identity

(1 + Gn
s V )(1 − gn

s V ) = 1 + Gn
s V − gn

s V − Gn
s V gn

s V = 1 (16)

which is valid because of (14). In terms of the resolvent kernel the solution of (15) is

Rn
L (r; E) = J n

L (r; E) +
∫

n
dr′ Gn

s (r, r′; E)V n(r′)J n
L (r′; E). (17)

The structure constants in (11) and (12) are connected by an algebraic Dyson equation

Gnn′
L L ′(E) = gnn′

L L ′(E) +
∑

n′′

∑
L ′′L ′′′

gnn′′
L L ′′(E)tn′′

L ′′ L ′′′(E)Gn′′n′
L ′′′L ′(E). (18)

The t matrix, which appears here and in Lloyd’s formula (7), is defined by

tn
L L ′(E) =

∫
n

dr J n
L (r; E)V n(r)Rn

L ′(r; E). (19)

By inserting (17) into (19) and using Gn
s (r, r′; E) = Gn

s (r
′, r; E) the symmetry

tn
L ′ L(E) = tn

L L ′(E) (20)

of the t matrix follows, which allows us to rewrite (18) as

Gnn′
L L ′(E) = gnn′

L L ′(E) +
∑

n′′

∑
L ′′L ′′′

Gnn′′
L L ′′(E)tn′′

L ′′L ′′′(E)gn′′n′
L ′′′L ′(E). (21)
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It remains to define the α matrix, which appears in Lloyd’s formula (7). This matrix describes
the different behaviour of the single-scattering solutions Rn

L and J n
L at the origin

Rn
L (r, E) =

∑
L ′

J n
L ′(r, E)αn

L ′L(E) for r → 0 (22)

and is defined as

αn
L L ′(E) = δL L ′ +

∫
n

dr H n
L (r, E)V n(r)Rn

L ′(r, E). (23)

Here H n
L is the irregular wavefunction of the reference system with the Green function

gn
s (r, r′; E), which agrees with −iκh(1)

l (κr)YL(r̂) outside the sphere circumscribed around
cell n, where r = |r| denotes the length of vector r. The irregular wavefunction of the system
with the Green function Gn

s (r, r′; E) will be denoted by Sn
L . It agrees with H n

L outside the
sphere circumscribed around cell n and satisfies the integral equation

Sn
L (r; E) =

∑
L ′

βn
L L ′(E)H n

L ′(r; E) +
∫

n
dr′ gn

s (r, r′; E)V n(r′)Sn
L(r′; E) (24)

with the solution

Sn
L (r; E) =

∑
L ′

βn
L L ′(E)

[
H n

L ′(r; E) +
∫

n
dr′ Gn

s (r, r′; E)V n(r′)H n
L ′(r′; E)

]
. (25)

The matrix β is defined by

βn
L L ′(E) = δL L ′ −

∫
n

dr Sn
L (r, E)V n(r)J n

L ′(r, E) (26)

and is the inverse of the α matrix. This can be seen by inserting (17) into (23) and then
using (25) to eliminate H n

L in favour of Sn
L , which leads to

αn
L L ′(E) = δL L ′ +

∑
L ′′

[β−1]n
L L ′′(E)

∫
n

dr Sn
L ′′ (r, E)V n(r)J n

L ′(r, E). (27)

Here the integral can be written as δL ′′L ′ − βn
L ′′L ′ because of (26) and α = β−1 follows. It

should be noted that the integral equations given above for the single-site Green functions and
wavefunctions define these functions in all space. Equations (13) and (14) are valid if r and
r′ are replaced by x and x′, and (15), (17), (24) and (25) are valid if r is replaced by x.

4. Elementary derivation

In order to simplify the notation the energy variable will be suppressed in the following
derivation, which starts from (8) by replacing G(x′′,x′) on the right-hand side by the right-hand
side of (9). The result is

G(x,x′′′) − g(x,x′′′) =
∫

dx′ g(x,x′)V (x′)g(x′,x′′′)

+
∫

dx′
∫

dx′′ g(x,x′)V (x′)G(x′,x′′)V (x′′)g(x′′,x′′′). (28)

The trace in (2) means an integration over space after setting x′′′ = x. This leads to

Tr(G − g) = −
∫

dx′ ġ(x′,x′)V (x′) −
∫

dx′
∫

dx′′ ġ(x′′,x′)V (x′)G(x′,x′′)V (x′′) (29)

where the relation (4) in the form∫
dx g(x′′,x; E)g(x,x′; E) = −ġ(x′′,x′; E) (30)
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was used. Here and below the dot means differentiation with respect to energy. The last
relation is a fundamental property of the Green functions and is valid for any energy independent
potential as shown in appendix B. With site-centred coordinatesr′ = x′−Rn′

and r′′ = x′′−Rn

equation (29) can be written as

Tr(G − g) = −
∑

n

∫
n

dr′ ġ(r′ + Rn, r′ + Rn)V n(r′) −
∑
nn′

∫
n′

dr′
∫

n
dr′′

× ġ(r′′ + Rn, r′ + Rn′
)V n′

(r′)G(r′ + Rn′
, r′′ + Rn)V n(r′′) (31)

where the integrals are written as sums of integrals over the cells. The potential V (x) is
thus partitioned into a sum of non-overlapping potentials V n(r). Into (31) the Green-function
representations (11) and (12) can be inserted. Both consist of a single-scattering and a back-
scattering part. The single integral in (31) thus leads to a sum of two terms and the double
integral to a sum of four terms. By combining these terms as described below, Tr(G − g) can
be written as sum of four terms

Tr(G − g) = A + B + C + D. (32)

Term A arises from the back-scattering parts of (11) and (12) and is given by

A = −
∑
nn′

∫
n′

dr′
∫

n
dr′′ ∑

L L ′L ′′ L ′′′

d

dE
[J n

L (r′′)gnn′
L L ′ J n′

L ′ (r
′)]

× V n′
(r′)Rn′

L ′′(r
′)Gn′n

L ′′ L ′′′ Rn
L ′′′(r

′′)V n(r′′). (33)

Appendix C shows that A can be rewritten as

A = −
∑
nn′

∑
L L ′L ′′ L ′′′

ġnn′
L L ′tn′

L ′ L ′′ Gn′n
L ′′L ′′′ tn

L ′′′ L

−
∑

n

∫
n

dr′′ ∑
L L ′′′

J̇ n
L (r′′)Gnn

L L ′′′ Rn
L ′′′(r

′′)V n(r′′)

+
∑

n

∫
n

dr′′ ∑
L L ′′′

J̇ n
L (r′′)gnn

L L ′′′ Rn
L ′′′ (r

′′)V n(r′′)

−
∑

n′

∫
n′

dr′ ∑
L ′ L ′′

J̇ n′
L ′ (r

′)V n′
(r′)Rn′

L ′′(r
′)Gn′n′

L ′′ L ′

+
∑

n′

∫
n′

dr′ ∑
L ′ L ′′

J̇ n′
L ′ (r

′)V n′
(r′)Rn′

L ′′(r
′)gn′n′

L ′′L ′ . (34)

Cross term B arises from the back-scattering part of (12) and the single-scattering part
of (11) and is given by

B = −
∑

n

∫
n

dr′ ∑
L L ′

d

dE
[J n

L (r′)gnn
L L ′ J n

L ′(r
′)]V n(r′)

−
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′

d

dE
[J n

L (r′′)gnn
L L ′ J n

L ′(r
′)]V n(r′)Gn

s (r
′, r′′)V n(r′′)

(35)

where due to the Kronecker symbols δnn′ in (11) the sum over n′ was eliminated. Appendix C
shows that B can be rewritten as

B = −
∑

n

∑
L L ′

tn
L ′L ġnn

L L ′

−
∑

n

∫
n

dr′′ ∑
L L ′

J̇ n
L (r′′)gnn

L L ′ Rn
L ′(r′′)V n(r′′)
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−
∑

n

∫
n

dr′ ∑
L L ′

Rn
L (r′)gnn

L L ′ J̇ n
L ′(r′)V n(r′). (36)

Cross term C arises from the single-scattering part of (12) and the back-scattering part
of (11) and is given by

C = −
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′
ġn

s (r′′, r′)V n(r′)Rn
L(r′)Gnn

L L ′ Rn
L ′(r

′′)V n(r′′). (37)

Appendix C shows that C can be rewritten as

C =
∑

n

∫
n

dr′′ ∑
L L ′

J̇ n
L (r′′)Gnn

L L ′ Rn
L ′(r

′′)V n(r′′)

−
∑

n

∫
n

dr′ ∑
L L ′

V n(r′)Ṙn
L (r′)Gnn

L L ′ J n
L ′(r

′). (38)

Term D arises from the single-scattering parts of (11) and (12) and is given by

D = −
∑

n

∫
n

dr′ ġn
s (r

′, r′)V n(r′) −
∑

n

∫
n

dr′
∫

n
dr′′ ġn

s (r′′, r′)V n(r′)Gn
s (r

′, r′′)V n(r′′).

(39)

This term is a sum of single-scattering contributions D = ∑
n Dn with

Dn =
∫

n
dr′

∫
dx gn

s (x, r′)V n(r′)gn
s (r

′,x)

+
∫

n
dr′

∫
n

dr′′
∫

dx gn
s (x, r′)V n(r′)Gn

s (r
′, r′′)V n(r′′)gn

s (r
′′,x) (40)

where the relation (30) for the single-site Green function gn
s was used. Here (13) can be used

to eliminate the integral over r′′, and then (14) can be used to eliminate the integral over r′.
The result is

Dn =
∫

n
dr′

∫
dx Gn

s (x, r′)V n(r′)gn
s (r

′,x) =
∫

dx [Gn
s (x,x) − gn

s (x,x)]. (41)

It is important to note that the last integral is over all space. Thus D differs from the result
which would be obtained if the single-site parts of (11) and (12) are inserted into the left-hand
side of (28). By integration this would lead to a sum of integrals over the cells instead of a
sum of integrals over all space and a clear separation of Lloyd’s formula into single-scattering
and the back-scattering parts would be impossible.

Dn can be expressed by a logarithmic derivative of the α matrix (23).

Dn = d

dE

∑
L

[ln αn]L L . (42)

By integration over energy and summation over n the single-scattering contribution of Lloyd’s
formula (7) follows from (42). For spherical potentials the validity of (42) was shown by
Drittler et al [18]. Later [20] the proof was extended to potentials of general shape by
expanding the single-scattering wavefunctions Rn

L(x) and Sn
L (x) into spherical harmonics,

for instance, Rn
L(x) = ∑

L ′ Rn
L ′ L(x)YL ′(x̂). The convergence behaviour of such expansions

has been extensively debated in the literature [30] and care must be taken with respect to
the order of summations over L and L ′. Appendix A shows that such spherical-harmonics
expansions for the single-scattering wavefunctions are not necessary to establish the validity
of (42).



6460 R Zeller

It remains to show that the sum of (34), (36) and (38) leads to the back-scattering part of
Lloyd’s formula. The sum is given by

A + B + C = −
∑
nn′

∑
L L ′L ′′ L ′′′

ġnn′
L L ′tn′

L ′ L ′′ Gn′n
L ′′L ′′′ tn

L ′′′ L −
∑

n

∑
L L ′

tn
L ′L ġnn

L L ′

−
∑

n′

∫
n′

dr′ ∑
L ′ L ′′

J̇ n′
L ′ (r

′)V n′
(r′)Rn′

L ′′(r
′)Gn′n′

L ′′ L ′

−
∑

n

∫
n

dr′ ∑
L L ′

V n(r′)Ṙn
L (r′)Gnn

L L ′ J n
L ′(r

′) (43)

since the second term of (34) cancels against the first term of (38), the third term of (34) against
the second term of (36) and the last term of (34) against the last term of (36). Differentiation
of (19) with respect to energy shows that the remaining integrals in (43) can be expressed by
the energy derivative of the t matrix. The result is

A + B + C = −
∑

n

∑
L L ′

tn
L ′L ġnn

L L ′ −
∑
nn′

∑
L L ′L ′′ L ′′′

ġnn′
L L ′tn′

L ′ L ′′ Gn′n
L ′′L ′′′ tn

L ′′′ L −
∑

n

∑
L L ′

ṫ n
L ′L Gnn

L L ′ (44)

or in concise matrix notation

A + B + C = − Tr[t ġ + t ġtG + ṫ g + ṫ gtG] = − Tr[(t ġ + ṫ g)(1 + tG)] (45)

where G = g + gtG was used to replace the last G in (44). The last result can be rewritten by
use of the identity (1 − tg)(1 + tG) = 1 as

A + B + C = − Tr[(t ġ + ṫ g)(1 − tg)−1]

= d

dE
Tr ln(1 − tg).

(46)

Energy integration and use of the matrix identity Tr ln M = ln det M directly lead to the
back-scattering contribution of Lloyd’s formula (7).

5. Conclusion

The main conclusion of this paper is that Lloyd’s formula, which in multiple-scattering theory
directly gives the energy integrated density of states, can be derived by elementary mathematical
means. The basic relation used is that a spatial integral over the product of two identical Green
functions can be obtained by differentiating this Green function with respect to energy. The
derivation given is rather general and covers both real and complex potentials. The form of
the potentials is not restricted to the muffin-tin approximation, but can be of general shape
within non-overlapping cells around the atomic scattering sites. Thus Lloyd’s formula is
generally valid in full-potential multiple-scattering theory. The derivation given also makes
no assumption for the energy and is thus valid both for real and complex energies. The
validity for complex energies is important for the use of Lloyd’s formula in electronic-structure
calculations, which use energy integrations along contours in the energy plane. A further result
of this paper is that Lloyd’s formula can be derived without an additional expansion of the
single-scattering wavefunctions in terms of spherical harmonics. Thus the question, whether
such an expansion converges or how fast it converges, is avoided in the present derivation.
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Appendix A. Single-site Green function

The purpose of this appendix is to show that the single-site Green functions gn
s and Gn

s can be
written in semi-separable form

Gs(x,x′) =
∑

L

RL (x<)SL (x>) (A.1)

gs(x,x′) =
∑

L

JL(x<)HL(x>) (A.2)

where x< and x> denote the vectors x and x′ with smaller and larger length and where, as
in the rest of this appendix, the cell superscript n is suppressed to simplify the notation. The
proof is based on a technique explained by Rall [31, 32] and starts from the Fredholm integral
equation

y(x) = f (x) +
∫

dx′ gs(x,x′)V (x′)y(x′) (A.3)

for an arbitrary function f (x), which in terms of the resolvent kernel has the solution

y(x) = f (x) +
∫

dx′ Gs(x,x′)V (x′) f (x′). (A.4)

The proof establishes that Gs can be written in the form (A.1), if gs can be written in the
form (A.2). Since the validity of (A.2) is well known for the free-space Green function (10),
where JL and HL are products of spherical Bessel and Hankel functions and spherical
harmonics, this shows that single-site Green functions can always be written in the semi-
separable forms (A.1) and (A.2). The proof applies (A.2) to convert Fredholm integral
equations into Volterra integral equations. For instance, by adding and subtracting appropriate
terms (24) can be converted into

SL (x) = HL(x) +
∫

dx′ ks(x,x′)V (x′)SL (x′) (A.5)

with

ks(x,x′) = �(x − x ′)
∑

L

[
JL(x′)HL(x) − JL (x)HL(x′)

]
(A.6)

where �(x) is the Heaviside step function. The solution of (A.5) is

SL (x) = HL(x) +
∫

dx′ Ks(x,x′)V (x′)HL(x′) (A.7)

containing the resolvent Volterra kernel Ks(x,x′)V (x′), which satisfies

Ks(x,x′) = ks(x,x′) +
∫

dx′′ ks(x,x′′)V (x′′)Ks(x
′′,x′). (A.8)

(A.3) can also be converted into Volterra form by adding and subtracting terms.

y(x) = f (x) +
∑

L

cL JL (x) +
∫

dx′ ks(x,x′)V (x′)y(x′). (A.9)

This equation has the solution

y(x) = f (x) +
∑

L

cL JL (x) +
∫

dx′ Ks(x,x′)V (x′)

[
f (x′) +

∑
L

cL JL (x′)

]
. (A.10)
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The coefficients cL depend on the unknown solution y(x) and are given by

cL =
∫

dx HL(x)V (x)y(x). (A.11)

Equation (A.11) can be rewritten as

y(x) = F(x) +
∑

L

cLUL(x) (A.12)

with the definitions

F(x) = f (x) +
∫

dx′ Ks(x,x′)V (x′) f (x′) (A.13)

UL (x) = JL(x) +
∫

dx′ Ks(x,x′)V (x′)JL(x′). (A.14)

The last equation is the solution of the Volterra integral equation

UL (x) = JL(x) +
∫

dx′ ks(x,x′)V (x′)UL(x′). (A.15)

Here (A.6) and (A.2) can be used to obtain

UL (x) =
∑

L ′
JL ′(x)β̃L ′L +

∫
dx′ gs(x,x′)V (x′)UL(x′) (A.16)

where the β̃ matrix is given by

β̃L L ′ = δL L ′ −
∫

dx HL ′(x)V (x)UL(x). (A.17)

Comparison of (A.16) with (15) shows the connection

UL (x) =
∑

L ′
RL ′(x)β̃L ′L (A.18)

which inserted into (A.17) leads to β̃ = 1 − (α − 1)β̃, from which β̃ = α−1 = β follows. The
coefficients cL are determined by inserting (A.12) into (A.11) and by replacing the functions
UL in favour of RL with the help of (A.18). The result is

cL =
∫

dx HL(x)V (x)F(x) +
∑

L ′
cL ′

∫
dx HL(x)V (x)

∑
L ′′

RL ′′(x)βL ′′L ′ . (A.19)

This is a system of linear equations for the coefficients cL . By use of (23) the second integral
can be expressed by α − 1 and because of (α − 1)β = 1 − β the solution of (A.19) is given by

cL =
∑

L ′
β−1

L L ′

∫
dx HL ′(x)V (x)F(x) (A.20)

or by

cL =
∑

L ′
β−1

L L ′

∫
dx SL ′(x)V (x) f (x) (A.21)

where the last result is a consequence of (A.13) and (A.7). Inserting (A.13) and (A.21)
into (A.12) leads to

y(x) = f (x) +
∫

dx′
[

Ks(x,x′)V (x′) +
∑
L L ′

UL(x)β−1
L L ′ SL ′(x′)V (x′)

]
f (x′). (A.22)

Here (A.18) can be used to eliminate UL in favour of RL . The comparison with (A.4) shows

Gs(x,x′) = Ks(x,x′) +
∑

L

RL (x)SL(x′). (A.23)
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According to (A.6) the Volterra kernel vanishes for x < x ′. This implies Ks(x,x′) = 0 for
x < x ′ and

Gs(x,x′) =
∑

L

RL (x)SL(x′) for x < x ′. (A.24)

By the symmetry Gs(x,x′) = Gs(x
′,x) the last result directly leads to (A.1), which completes

the proof.

Appendix B. Proof of Ġ = −GG and K̇ = −KK

For the free-space Green function the fundamental relation (30) is a standard result, which
can be obtained, for instance, by Fourier transformation. For a system with potential V the
relation (30) for the Green function G can be derived from (8) by differentiation. This leads to

Ġ = ġ + ġV G + gV Ġ (B.1)

where all variables and integrals are suppressed to simplify the notation. Since ġ = −gg is
valid for the free-space Green function, (B.1) can be rewritten as

Ġ = −gg − ggV G + gV Ġ (B.2)

and because of (8) as

(1 − gV )Ġ = −gG. (B.3)

The identity (16) then implies

Ġ = −(1 + GV )gG = −GG (B.4)

where the last result is obtained because of (9). Since k and K are connected by (A.8) in
the same way as g and G by (8), the consideration above also shows that k̇ = −kk implies
K̇ = −K K . Therefore it is sufficient to consider free space, where k can be expressed by
spherical harmonics and Bessel and Neumann functions of index ν = l + 1/2 as

k(x,x′; κ) = π

2
√

xx ′ �(x − x ′)
∑

L

[
Jν(κx ′)Nν(κx) − Jν(κx)Nν(κx ′)

]
YL(x̂)YL(x̂′). (B.5)

Angular integration over spherical harmonics then gives∫
dx k(x′′,x; κ)k(x,x′; κ) = π2

4
√

x ′x ′′
∑

L

[
Nν(κx ′′)Jν(κx ′)

∫ x′′

x′
x dx Jν(κx)Nν(κx)

− Jν(κx ′′)Jν(κx ′)
∫ x′′

x′
x dx Nν(κx)Nν(κx)

− Nν(κx ′′)Nν(κx ′)
∫ x′′

x′
x dx Jν(κx)Jν(κx)

× Jν(κx ′′)Nν(κx ′)
∫ x′′

x′
x dx Nν(κx)Jν(κx)

]
YL (x̂′′)YL(x̂′)�(x ′′ − x ′). (B.6)

Here the terms which arise from the upper limit x ′′ and multiply Nν(κx ′) can be simplified
according to

Jν(κx ′′)
∫ x′′

x dx Jν(κx)Nν(κx) − Nν (κx ′′)
∫ x′′

x dx Jν(κx)Jν(κx)

= x ′′2

4
Jν[2Jν Nν − Jν−1 Nν+1 − Jν+1 Nν−1] − x ′′2

4
Nν [2Jν Jν − 2Jν−1 Jν+1]



6464 R Zeller

= x ′′2

4
Jν+1[Jν−1 Nν − Jν Nν−1] − x ′′2

4
Jν−1[Jν Nν+1 − Jν+1 Nν ]

= − x ′′

2πκ
[Jν+1 − Jν−1] = 1

πκ

d

dκ
Jν(κx ′′) (B.7)

where in the intermediate steps the argument κx ′′ of Bessel and Neumann functions was omitted
and where the standard formulae∫

x dx wν(κx)Wν(κx)

= x2

4

[
2wν(κx)Wν(κx) − wν−1(κx)Wν+1(κx) − wν+1(κx)Wν−1(κx)

]
(B.8)

and

Jν−1(x)Nν(x) − Jν(x)Nν−1(x) = − 2

πx
(B.9)

were used. These formulae, where wν and Wν can be either Jν or Nν , are given as 7.14.1(10)
and 7.11(35) in [33]. Similarly the terms, which arise from the upper limit x ′′ and multiply
Jν(κx ′), and the terms which arise from the lower limit x ′, can simplified according to

Nν (κx ′′)
∫ x′′

x dx Nν(κx)Jν(κx) − Jν(κx ′′)
∫ x′′

x dx Nν(κx)Nν(κx)

= − 1

πκ

d

dκ
Nν (κx ′′) (B.10)

Jν(κx ′)
∫

x′
x dx Jν(κx)Nν(κx) − Nν(κx ′)

∫
x′

x dx Jν(κx)Jν(κx)

= − 1

πκ

d

dκ
Jν(κx ′) (B.11)

Nν (κx ′)
∫

x′
x dx Nν(κx)Jν(κx) − Jν(κx ′)

∫
x′

x dx Nν (κx)Nν(κx)

= 1

πκ

d

dκ
Nν(κx ′). (B.12)

By inserting (B.7) and (B.10)–(B.12) in (B.6) the result∫
dx k(x′′,x; κ)k(x,x′; κ) = − π

2κ
√

x ′x ′′ �(x ′′ − x ′)
∑

L

YL(x̂′′)YL (x̂′)

× d

dκ

[
Nν (κx ′′)Jν(κx ′) − Nν(κx ′)Jν(κx ′′)

]
= − 1

2κ

d

dκ
k(x′′,x′; κ) (B.13)

follows, which completes the proof.

Appendix C. Simplification of the back-scattering terms

By the product rule for differentiation term A can be written as a sum of the following three
contributions

A1 = −
∑
nn′

∫
n′

dr′
∫

n
dr′′

×
∑

L L ′ L ′′L ′′′
J n

L (r′′)ġnn′
L L ′ J n′

L ′ (r′)V n′
(r′)Rn′

L ′′(r′)Gn′n
L ′′L ′′′ Rn

L ′′′(r′′)V n(r′′) (C.1)
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A2 = −
∑
nn′

∫
n′

dr′
∫

n
dr′′

×
∑

L L ′ L ′′L ′′′
J̇ n

L (r′′)gnn′
L L ′ J n′

L ′ (r
′)V n′

(r′)Rn′
L ′′(r

′)Gn′n
L ′′L ′′′ Rn

L ′′′(r
′′)V n(r′′) (C.2)

A3 = −
∑
nn′

∫
n′

dr′
∫

n
dr′′

×
∑

L L ′ L ′′L ′′′
J n

L (r′′)gnn′
L L ′ J̇ n′

L ′ (r
′)V n′

(r′)Rn′
L ′′(r

′)Gn′n
L ′′L ′′′ Rn

L ′′′(r
′′)V n(r′′). (C.3)

The integrals over r′ and r′′ in (C.1) can be expressed by t matrices given in (19) and (20).
Thus A1 gives the first term of (34). Similarly the integral over r′ in (C.2) and the integral
over r′′ in (C.3) can be expressed by t matrices. This leads to

A2 = −
∑
nn′

∫
n

dr′′ ∑
L L ′L ′′ L ′′′

J̇ n
L (r′′)gnn′

L L ′ tn′
L ′ L ′′ Gn′n

L ′′L ′′′ Rn
L ′′′ (r

′′)V n(r′′) (C.4)

A3 = −
∑
nn′

∫
n′

dr′ ∑
L L ′ L ′′ L ′′′

gnn′
L L ′ J̇ n′

L ′ (r
′)V n′

(r′)Rn′
L ′′(r

′)Gn′n
L ′′ L ′′′ tn

L ′′′ L . (C.5)

Because of (18) and (21) the sums over n′ and L ′L ′′ in (C.4) and over n and L ′′′L in (C.5) can
be substituted by differences of structure constants Gnn′

L L ′ –gnn′
L L ′ , and A2 and A3 give the last

four terms of (34).
Term B can also be written as a sum of three contributions

B1 = −
∑

n

∫
n

dr′ ∑
L L ′

J n
L (r′)ġnn

L L ′ J n
L ′(r

′)V n(r′)

−
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′
J n

L (r′′)ġnn
L L ′ J n

L ′(r
′)V n(r′)Gn

s (r
′, r′′)V n(r′′) (C.6)

B2 = −
∑

n

∫
n

dr′ ∑
L L ′

J̇ n
L (r′)gnn

L L ′ J n
L ′(r

′)V n(r′)

−
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′
J̇ n

L (r′′)gnn
L L ′ J n

L ′(r
′)V n(r′)Gn

s (r
′, r′′)V n(r′′) (C.7)

B3 = −
∑

n

∫
n

dr′ ∑
L L ′

J n
L (r′)gnn

L L ′ J̇ n
L ′(r

′)V n(r′)

−
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′
J n

L (r′′)gnn
L L ′ J̇ n

L ′(r
′)V n(r′)Gn

s (r
′, r′′)V n(r′′). (C.8)

The integral over r′ in the second term of (C.6) can be eliminated because of (17) and the
result is

B1 = −
∑

n

∫
n

dr′′ ∑
L L ′

J n
L (r′′)ġnn

L L ′ Rn
L ′(r

′′)V n(r′′). (C.9)

Because of (19) the last result can be further simplified and gives the first term of (36). The
integrals over r′ in (C.7) and over r′′ in (C.8) can similarly be eliminated. This leads to the
second and third term of (36).

Term C depends on the derivative ġn
s , which can be eliminated in terms of Ṙn

L and J̇ n
L by

differentiating (15) with respect to energy. The differentiation leads to∫
n

dr′ ġn
s (r′′, r′)V n(r′)Rn

L(r′) = Ṙn
L (r′′) − J̇ n

L (r′′) −
∫

n
dr′ gn

s (r
′′, r′)V n(r′)Ṙn

L (r′) (C.10)
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which used in (37) gives

C =
∑

n

∫
n

dr′
∫

n
dr′′ ∑

L L ′
gn

s (r
′′, r′)V n(r′)Ṙn

L(r′)Gnn
L L ′ Rn

L ′(r
′′)V n(r′′)

−
∑

n

∫
n

dr′′ ∑
L L ′

Ṙn
L(r′′)Gnn

L L ′ Rn
L ′(r

′′)V n(r′′)

+
∑

n

∫
n

dr′′ ∑
L L ′

J̇ n
L (r′′)Gnn

L L ′ Rn
L ′(r

′′)V n(r′′). (C.11)

In the first line the integral over r′′ can be expressed by a difference of Rn
L ′(r) and J n

L ′(r).
Only the contribution arising from J n

L ′(r) remains, since the contribution from Rn
L ′(r) cancels

against the second term of (C.11). The result then gives (38).

Appendix D. Simplification of the single-scattering term

Dn can be expressed by a logarithmic derivative of the α matrix (23). This can be shown as
follows. The starting point is the product Rn

L (x)Sn
L(x), which by introducing γ n = (1−βn)−1

and using γ n − γ nβn = 1 can be written as

Rn
L (x)Sn

L(x) =
∑

L ′
Rn

L(x)γ n
L L ′ Sn

L ′(x) −
∑
L ′ L ′′

Rn
L(x)βn

L L ′′γ
n
L ′′L ′ Sn

L ′(x)

=
∑

L ′
[Rn

L(x) − J n
L (x)]γ n

L L ′ Sn
L ′(x)

−
∑
L ′L ′′

Rn
L(x)βn

L L ′′γ
n
L ′′ L ′[Sn

L ′(x) − H n
L ′(x)]

+
∑

L ′
J n

L (x)γ n
L L ′ Sn

L ′ (x) −
∑
L ′L ′′

Rn
L(x)βn

L L ′′γ
n
L ′′ L ′ H n

L ′(x) (D.1)

where the terms appearing in the last line were added and subtracted. Similarly the product
J n

L (x)H n
L(x) can be expressed as

J n
L (x)H n

L(x) =
∑

L ′
J n

L (x)γ n
L L ′ H n

L ′(x) −
∑
L ′ L ′′

J n
L (x)γ n

L L ′′β
n
L ′′L ′ H n

L ′(x)

=
∑

L ′
J n

L (x)]γ n
L L ′[H n

L ′(x) − Sn
L ′(x)]

+
∑
L ′L ′′

[Rn
L(x) − J n

L (x)]γ n
L L ′′β

n
L ′′ L ′ H n

L ′(x)

+
∑

L ′
J n

L (x)γ n
L L ′ Sn

L ′ (x) −
∑
L ′L ′′

Rn
L(x)βn

L L ′′γ
n
L ′′ L ′ H n

L ′(x) (D.2)

where γ nβn = βnγ n was used in the last line. The last lines of (D.1) and (D.2) are identical
and thus the difference of (D.1) and (D.2) is given by∑

L

[Rn
L(x)Sn

L(x) − J n
L (x)H n

L (x)]

=
∑

L L ′ L ′′
[Rn

L (x) − J n
L (x)]γ n

L L ′′[δL ′′L ′ Sn
L ′ (x) − βn

L ′′L ′ H n
L ′(x)]

−
∑

L L ′L ′′
[Rn

L(x)βn
L L ′′ − J n

L (x)δL L ′′]γ n
L ′′L ′ [Sn

L ′(x) − H n
L ′(x)]. (D.3)

Here wavefunction differences can be replaced by integrals by using (15) and (24) in the first
line and (A.18), (A.14) and (A.7) in the second line. The result is∑

L

[Rn
L(x)Sn

L(x) − J n
L (x)H n

L (x)]
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=
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ Rn

L(r′)V n(r′)gn
s (r′,x)gn

s (x, r′′)V n(r′′)Sn
L ′(r′′)

−
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ J n

L (r′)V n(r′)K n
s (r′,x)K n

s (x, r′′)V n(r′′)H n
L ′(r

′′).

(D.4)

Integration over x leads to

Dn = −
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ Rn

L(r′)V n(r′)ġn
s (r′, r′′)V n(r′′)Sn

L ′ (r
′′)

+
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ J n

L (r′)V n(r′)K̇ n
s (r′, r′′)V n(r′′)H n

L ′(r
′′) (D.5)

where (A.1), (A.2) and (41) were used on the left-hand side and where the right-hand side
occurs because of (30) and the result∫

dx K n
s (x′′,x)K n

s (x,x′) = −K̇ n
s (x′′,x′) (D.6)

of appendix B. In (D.5) the energy derivatives of gn
s and K n

s can be eliminated by (C.10) and
by a similar equation which is obtained by differentiating (A.7) with respect to energy. The
result is

Dn =
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ Ṙn

L(r′)V n(r′)gn
s (r

′, r′′)V n(r′′)Sn
L ′(r

′′)

−
∑
L L ′

γ n
L L ′

∫
n

dr′ [Ṙn
L(r′) − J̇ n

L (r′)]V n(r′)Sn
L ′(r

′)

−
∑
L L ′

γ n
L L ′

∫
n

dr′
∫

n
dr′′ J n

L (r′)V n(r′)K n
s (r′, r′′)V n(r′′)Ḣ n

L ′(r
′′)

+
∑
L L ′

γ n
L L ′

∫
n

dr′ J n
L (r′)V n(r′)[Ṡn

L ′(r
′) − Ḣ n

L ′(r
′)]. (D.7)

Here (24) can be used in the first two lines to eliminate gn
s and (A.14) together with (A.18) in

the last two lines to eliminate K n
s . This leads to

Dn = −
∑
L L ′

γ n
L L ′

∫
n

dr′ Ṙn
L(r′)V n(r′)

∑
L ′′

βn
L ′L ′′ H n

L ′′(r
′)

+
∑
L L ′

γ n
L L ′

∫
n

dr′ J̇ n
L (r′)V n(r′)Sn

L ′(r
′)

−
∑
L L ′

γ n
L L ′

∫
n

dr′ ∑
L ′′

Rn
L ′′(r

′)βn
L ′′ L V n(r′)Ḣ n

L ′(r
′)

+
∑
L L ′

γ n
L L ′

∫
n

dr′ J n
L (r′)V n(r′)Ṡn

L ′(r
′). (D.8)

Since β and γ are commutative matrices, the expression γ n
L L ′βn

L ′′L in the third line can be
replaced by βn

L L ′γ
n
L ′′ L . A cyclic interchange of the L-summation indices in the first line then

shows that the sum of the integrals in the first and third line leads to the energy derivative of
the α matrix (23). Similarly, the sum of the integrals in the second and fourth line leads to the
energy derivative of the β matrix (26) and

Dn = −
∑

L L ′L ′′
γ n

L ′′ Lβn
L L ′′ α̇

n
L ′ L ′′ −

∑
L L ′

γ n
L L ′ β̇

n
L ′L (D.9)
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follows. By use of β̇ = −β2α̇ and γβ − γβ2 = β the final results are obtained as

Dn = −
∑
L L ′

βn
L L ′ α̇

n
L L ′′ (D.10)

which because of β = α−1 directly gives (42).
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